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TacticFlow: Visual Analytics of Ever-Changing Tactics
in Racket Sports

Jiang Wu, Dongyu Liu, Ziyang Guo, Qingyang Xu, and Yingcai Wu

Fig. 1. A screenshot of the user interface for visually analyzing the tactic progression in racket sports. There exist five main views: the
Control Bar (A), the Flow View (B), the Tactic View (C), the Projection View (D), and the Rally View (E). An analysis process may be that
users first filter the sequences to be analyzed in the Control Bar. The system mines tactics from these sequences, and the Projection
View projects the tactics into a 2-D plane based on the similarity among these tactics. After users clicking on a point of interest, they
can view where the tactic is used and the related tactic progression in the Flow View. We propose an intuitive glyph design (B1) for
each node to visualize the usage of a tactic. Users can also view the tactic in detail in the Tactic View. A comparison mode of this view
(C1) further supports comparing two tactics. Finally, in the Rally View, users can view the raw sequences that apply the selected tactic.

Abstract— Event sequence mining is often used to summarize patterns from hundreds of sequences but faces special challenges
when handling racket sports data. In racket sports (e.g., tennis and badminton), a player hitting the ball is considered a multivariate
event consisting of multiple attributes (e.g., hit technique and ball position). A rally (i.e., a series of consecutive hits beginning with
one player serving the ball and ending with one player winning a point) thereby can be viewed as a multivariate event sequence.
Mining frequent patterns and depicting how patterns change over time is instructive and meaningful to players who want to learn more
short-term competitive strategies (i.e., tactics) that encompass multiple hits. However, players in racket sports usually change their
tactics rapidly according to the opponent’s reaction, resulting in ever-changing tactic progression. In this work, we introduce a tailored
visualization system built on a novel multivariate sequence pattern mining algorithm to facilitate explorative identification and analysis
of various tactics and tactic progression. The algorithm can mine multiple non-overlapping multivariate patterns from hundreds of
sequences effectively. Based on the mined results, we propose a glyph-based Sankey diagram to visualize the ever-changing tactic
progression and support interactive data exploration. Through two case studies with four domain experts in tennis and badminton, we
demonstrate that our system can effectively obtain insights about tactic progression in most racket sports. We further discuss the
strengths and the limitations of our system based on domain experts’ feedback.

Index Terms—Sports Analytics, Multivariate Event Sequence, Sequential Pattern Mining, Progression Analysis.

1 INTRODUCTION
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Racket sports, including tennis, badminton, and table tennis, are popular
worldwide. In a singles match of a racket sport, two players alternate
hitting the ball, beginning with one player’s serve and ending with a
player scoring a point. This series of alternate hits is called a rally. A
player may consider multiple, detailed characteristics when hitting the
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ball, such as hit technique and ball position. In this sense, each hit can
be considered a multivariate event – with each of these characteristics
comprising an attribute – and each rally can thus be viewed as an event
sequence. To win a rally, a player may adopt several tactics: short-term
competitive strategies that utilize various characteristics over the course
of the next few hits. In tennis, for example, one tactic may consist of
three hits: 1) Player 1 hits the ball to the left side of the tennis court
(ball position); 2) Player 2 runs to this position to return the ball (player
position predicted by Player 1); 3) Player 1 uses a powerful hitting
technique, a drive, to hit the ball to the right side of the tennis court
so that the opponent cannot easily return the ball (hit technique; ball
position). Because tactics often determine the outcome of a match,
domain experts hope to gain insights into how they are used.

However, analyzing tactics is complicated because they are versatile
and ever-changing over the course of a high-level match, due to the
following dynamics: First, players change tactics in response to the
opponents in a rally. As two players alternate hitting the ball, each
player changes tactics rapidly according to how his/her opponent reacts.
Second, players prefer different tactics in the same situation. A
player may choose a tactic for a specific situation, such as when serving
or if the opponent uses a certain move. A player may also “mix it
up” over the course of a game, making different choices in the same
situation so that the opponent cannot predict his/her tactics and adopt
counter-tactics. Third, a player using the same tactic in different
situations can yield changing results. A player may be good at a
particular tactic and adopt it in a variety of situations. The tactic may
work well in some situations but not others, leading to different results.

Such features of tactics introduce two challenges. First, mining par-
ticular tactics is challenging. Tactics are non-overlapping multivariate
patterns, and there may be more than one in a sequence. To the best
of our knowledge, no existing algorithm can be easily applied to mine
tactics. Second, even if we have identified the tactics, domain experts
need to analyze tactic progression. Many studies [29] have proven that
visualizations are beneficial for progression analysis. However, the
ever-changing progression of multivariate tactics can bring heavy visual
clutter, preventing domain experts from exploring tactic progression.

To address the aforementioned challenges, we introduce TacticFlow,
a visual analytics system for analyzing ever-changing tactics in racket
sports. To tackle the first challenge, we propose a data-driven definition
of tactics, describing a tactic by a multivariate pattern, and a multi-
variate pattern mining algorithm. To tackle the second challenge, we
introduce a tailored user interface to visualize ever-changing tactics
with multiple levels of detail [50]. The core view is a glyph-based
Sankey diagram to demonstrate the progression of tactics, where we
propose a glyph design to help domain experts find interesting tactics
quickly. We further enable rich data exploration interactions, such as
comparing two tactics and tracking the progression.

Our system is evaluated through two case studies on two real-world
datasets — a tennis dataset and a badminton dataset – in consultation
with four domain experts, two from each sport. The case studies
show that our system can help domain experts gain insights into how
players changed tactics. After the case studies concluded, we conducted
interviews with the experts and gathered feedback from them on the
usability and effectiveness of our system. All domain experts praised
our system for helping players improve their competitive performance.

In summary, the main contributions of this work include:
• An effective pattern mining pipeline for identifying various tactics

and discovering ever-changing tactic progressions.
• A tailored user interface for visually and interactively analyzing

ever-changing tactics in racket sports.
• Two case studies on real-world racket sports datasets along with

expert interviews, demonstrating the usability of our system.

2 RELATED WORK

2.1 Multivariate Pattern Mining
Pattern mining algorithms are widely used for analyzing event se-
quences [29]. Some traditional sequential pattern mining (SPM) al-
gorithms search all subsequences for which the frequency is higher
than a certain threshold [19, 20]. MSDD [44] first introduced a mul-
tivariate SPM algorithm, inspiring many other multivariate SPM al-

gorithms [9, 42, 52, 59]. However, SPM methods suffer from pattern
explosion [40] – they return few patterns when the threshold is high,
but a great number of patterns when the threshold is slightly lower.
Domain experts may waste considerable time examining numerous
meaningless (more precisely, similar and repetitive) patterns.

Recently, the Minimum Description Length (MDL) principle [2,4,25,
53] has been introduced to summarize patterns. Unlike SPM methods
that search all frequent subsequences, MDL-based methods discover a
set of patterns that summarize the dataset well. The pattern set is usually
small, and the patterns are usually meaningful, avoiding the problem
of pattern explosion. Wu et al. [60] introduced a steerable MDL-based
multivariate pattern mining algorithm for interactive pattern exploration.
However, this algorithm can only extract one pattern for a sequence
and thus cannot reveal the progression of tactics. Ditto [2] can mine
multiple multivariate patterns in a sequence, but these patterns can
overlap, making it difficult to analyze the progression of tactics. In this
paper, we propose a new pattern mining pipeline for identifying tactics
and detecting tactic progression in racket sports.

2.2 Progression Analysis of Event Sequence
The comprehensive survey of event sequence [1] indicated that progres-
sion analysis is generally regarded as an essential task, which “aims
to uncover the evolution of one event during a period of time.” Many
previous studies [16, 33, 35, 47] adopted timeline-based visualizations
to display each sequence, encoding events with visual metaphors, as
progression analysis is mainly related to time. These studies visualized
the progression of each individual sequence, but analyzing the progres-
sion of hundreds of sequences was time-consuming. To overcome this
problem, Flow-based designs [10, 17, 24, 32, 41, 58, 66] simplified the
visualizations by aggregating similar sequences and constructing flow
charts. Each node represents a certain type of event occurring in multi-
ple sequences at a similar time, and the links reveal how the sequences
progress among these nodes over time. However, as the flow-based
designs usually visualize the progression between two consecutive
events, this flow may be extremely long when handling long sequences.
DecisionFlow addressed this problem through milestone-based data rep-
resentation and visualization. However, experts in racket sports cannot
define and select the milestone events manually, because ever-changing
tactics can lead to ever-changing milestones. EventThread [27, 28] ex-
tended the flow-based design to the stage-based design, where multiple
events occurred in a particular period are aggregated into a node. How-
ever, EventThread focus on univariate event sequences and cannot be
applied to multivariate tactics easily. Eventpad [5, 6] can handle multi-
variate sequences, but focuses on event-level exploration and searching
rather than progression analysis. We extend the stage-based design by
proposing a glyph-based Sankey diagram, where a tailored glyph for
each node visualizes the usage of a multivariate tactic.

2.3 Visual Analytics of Event Sequences in Sports
Event sequence data is a general data model widely applied in vari-
ous sports, and visual analytics of event sequence data is increasingly
essential for sports [46]. In team sports, such as soccer [1, 45, 63],
basketball [7], rugby [12, 31] and baseball [36], events include passing,
dribbling, etc., and a sequence usually describes how a team organizes
an attack. In racket sports, each stroke can be considered as an event and
each rally as a sequence [37]. Wu et al. [60] proposed a generic frame-
work for all racket sports to compare the tactical patterns of two players.
CourtTime [48] visualized the position where the ball falls in the tennis
court with a novel visual metaphor. ShuttleSpace [64] and TIVEE [11]
analyzed badminton data immersively. In table tennis, iTTVis [61]
revealed the relationship among multiple attributes with a matrix, and
Tac-Simur [56] simulated the results of tactical changes based on the
Markov Chain. Tac-Miner [55] proposed a knowledge-driven definition
of “tactic” (i.e., three consecutive strokes) and discovered all tactics
by simply traversing each sequence. In contrast to Tac-Miner, this
paper proposes a data-driven definition of “tactic,” which facilates the
discovery of new insights beyond existing knowledge, and incorpo-
rates a pattern-mining algorithm in order to summarize tactics from
all sequences. Moreover, the progression of tactics is an essential and
understudied issue in sports. This paper proposes a tailored design for
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Fig. 2. Two event sequences and a tactic in racket sports. Sequences s1
and s2 both comprise four events over two attributes, namely technique
and ball position. Tactic t has 3 events, where the blanks indicate the
positions filled by different values in different sequences.

visual analysis of tactic progression in racket sports.

3 BACKGROUND

For the past five years, we have held weekly meetings with two teams
of domain experts, one in tennis and the other in badminton. Each team
consists of a professor and several Ph.D. students in sports science,
and both provide data analysis for national teams. The results of our
collaboration are as follows, including the data model, the analysis
tasks, and a tailored visual analytics system.

3.1 Data Model
Raw data. Because in racket sports players alternate hitting the ball
or shuttle, we model this data as event sequences, where each hit is
regarded as an event and a series of consecutive hits is regarded as
a sequence. Formally, our dataset contains hundreds of sequences,
denoted S = {s1,s2, ...,sn}, where n is the number of sequences. Each
sequence si is a vector of ordered events, denoted si = {e1,e2, ...,em},
indicating m alternative hits from an initial serve to a winning hit.
Each hit is described as a multivariate event, denoted by ei = {a1 =
v1,a2 = v2, ...,ak = vk}, where we consider k categorical attributes
from a1 to ak (e.g., the technique used to hit, the rotation direction)
and the corresponding values from v1 to vk, respectively. Although
racket sports are similar, different sports have different attributes. For
example, the height of the ball is essential in badminton but not in table
tennis. Moreover, even if some attributes are involved in many sports,
the values can be different. For example, the position of the ball is of
concern in all racket sports, but a tennis court is much larger than a
ping pong table, leading to more optional ball positions in tennis.

Mined tactics. In a data-driven way, we define a tactic as a frequent
subsequence Sthat consists of two players’ alternating hits, in two steps.
First, given an event ea = {a1 = v1,a2 = v2, ...,ak = vk} and l integers
satisfying 1 ≤ i1 < i2 < ... < il ≤ k, we define eb = {ai1 = vi1 ,ai2 =
vi2 , ...,ail = vil} as a partial event of ea, which preserves l attributes of
ea and drops other attributes, denoted eb � ea. For example, in Fig. 2,
event e3 of tactic t is a partial event of event e5 of sequence s, where the
technique is preserved and the ball position is dropped. Second, given
sequence sa = {ea

1,e
a
2, ...,e

a
m} and sb = {eb

1,e
b
2, ...,e

b
l }, we define sb as

a subsequence of sa, if there exist l integers 1 ≤ i1 < i2 < ... < il ≤ m
satisfying eb

x � ea
ix for each 1 ≤ x ≤ l. For example, in Fig. 2, tactic t is

a subsequence of sequence s1.
To ensure that the tactics are meaningful, we further add two con-

straints. First, a tactic should be compact. Players usually consider
only about three consecutive hits in a tactic because predicting the
opponent’s actions is difficult after several hits. Thus, the hits in a tactic
must be consecutive, and the length is about three. Second, two tactics
should not overlap. A player can perform only one tactic at a time.
Thus, for each pair of tactics that occur in the same sequence, one tactic
must end before the other tactic starts.

3.2 Task Analysis
We collected the requirements for visually analyzing changeable tactics
from domain experts and summarized the analysis tasks as follows.
T1 Identify the tactics used by a player. Given that each player has

personal tactics, domain experts usually specify a player of inter-
est and analyze his/her personal tactics. Moreover, domain ex-
perts usually select many similar opponents (e.g., all left-handed
opponents) to know the player’s tactics for competing against
such opponents comprehensively. Our system should mine and
visualize the tactics of a certain player.

T2 Reveal the tactic progression. When finding a tactic of interest,
domain experts need to know what tactics it comes from and what

Fig. 3. The framework of our system, which consists of an event se-
quence dataset, a backend with core algorithms, and a user interface.
The gray arrows indicate the data flow.

tactics it may progress into. By understanding the various changes,
experts can know when a tactic is used and the results that the
tactic can lead to. Our system should reveal the progressive
relationships among versatile tactics.

T3 Point out the tactics worth analyzing across a full progression.
A player may adopt versatile tactics to compete against opponents.
Instead of analyzing each tactic and exploring what comes before
and after, domain experts prefer to analyze tactics that can affect
the overall progression significantly (e.g., a tactic that can directly
score a point without tactics coming after it). Our system should
visualize the tactics with multiple levels of detail, where the
visualizations at the highest level should help users quickly find
the tactics worth analyzing.

T4 Compare two multivariate tactics. Comparison is essential for
data analysis of sequential data [22, 26, 38]. For two tactics,
domain experts usually want to know which is better and why it is
better than the other. Especially for two similar ones, experts need
to know which characteristics make them perform differently. Our
system should support comparison between two tactics.

T5 Display the raw sequences. Experts need to examine a tactic
in the context of a rally in order to know what happened in real
games so that they can communicate each rally to the player. Our
system should display the raw data for data exploration in detail.

3.3 System Framework

We introduce a generic visual analytics system to satisfy the afore-
mentioned domain requirements (Fig. 3). The system is made up of
a dataset, a backend, and a user interface. The dataset contains event
sequences collected from different racket sports. The backend reads
sequences from the dataset, mines tactics in these sequences, and con-
structs a flow chart that reveals how players change their tactics. The
user interface comprises five main views to visualize the mined results
and support steerable data exploration.

We implement the dataset through MongoDB. The backend is devel-
oped based on the Flask framework in Python 3, using RESTful API.
We implement our algorithm in C++, which is called by the backend,
to achieve high performance efficiently. We adopt React, a well-known
JavaScript library, to build the user interface. We open all the source on
OSF (https://osf.io/9x4yp/).

4 ALGORITHM

We introduce a new pattern mining pipeline to discover tactics in racket
sports and how they change. In this section, we briefly introduce the
Minimum Description Length (MDL) principle as the basis of our
method and then demonstrate our implementation in detail.

4.1 MDL principle

The MDL principle was initially a theory used for data compression
[25]. Given a dataset D, the MDL principle tries to find a model M
that can summarize the dataset well, and describes the dataset based on
the model. MDL assumes that the optimal model brings the shortest
description length of the dataset. Formally, MDL optimizes the model
M to obtain a minimum L(M)+L(D|M), where L(M) represents the
description length of the model and L(D|M) represents the description
length of the datasets based on the model.
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Fig. 4. The pipeline of our algorithm. (A) There exist four event sequences (s1 to s4) over two attributes (a1 and a2) in the dataset. (B) We mine
three tactics (X , Y , and Z) from the four sequences. (C) We transfer the original event sequences into tactic sequences (ts1, ts2, ts3 and ts4). (D) We
summarize a flow diagram from the tactic sequences to reveal the tactic progression.

Fig. 5. Example of generating candidate patterns. There exist two
patterns (p1 and p2) over three attributes (a1 to a3). Combining p1 and
p2 in different alignments can obtain five candidate patterns (cp1 to cp5).
But cp5 is invalid because there is a conflicting value.

Recently, MDL has been increasingly adopted in sequential pattern
mining [2, 34, 51, 53] and related visual analytics systems [8, 15, 60].
Given a dataset of event sequences, MDL considers a set of patterns as
the model to describe the original sequences and define a measure to
calculate the description length. By minimizing the description length,
the algorithm can discover an optimized set of patterns.

4.2 Algorithm Implementation
Our algorithm is highly correlated with our visualizations. Considering
that there exist two core analysis targets: the tactics and the tactic
progression, we implement our algorithm in two steps: identifying the
tactics and discovering the tactic progression. Detailed implementa-
tion of these two steps is as follows.

4.2.1 Identifying Tactics
In this step, we introduce a multivariate pattern mining algorithm to
summarize a small set of frequent tactics from hundreds of original
sequences. For example, in Fig. 4, we mine three tactics (t1 to t3)
from four sequences (s1 to s4). Inspired by Ditto [2], we propose a
generic multivariate pattern mining algorithm based on MDL. The core
idea is similar to the Generative Adversarial Network (GAN), where
the algorithm consists of two parts: a pattern generator and a pattern
discriminator. The generator continuously generates new candidate
patterns based on the current pattern set. The discriminator provides a
measure based on MDL to judge whether a pattern is beneficial to sum-
marizing the dataset. The algorithm iteratively adds the good patterns to
the pattern set and removes the bad ones until the pattern set no longer
changes. We adopt this idea due to two reasons: 1) The generator can
selectively generate tactics instead of searching the ample space of
versatile tactics, reducing the running time. 2) The discriminator can
define a measure flexibly based on domain requirements to filter the
tactics, which are meaningful to domain analysis.

Generator: The generator first initializes the pattern set with all
single values, i.e., a partial event with only one value. Then, at every
iteration, the generator selects a pair of tactics in the pattern set and
combines them at different alignments to generate candidate patterns.
For example, in Fig 5, we can generate five candidate patters (cp1 to
cp5) by combining two patterns (p1 and p2) at different alignments.
However, we regard cp5 as invalid because there exists a conflicting
value. To ensure that the combination of tactics is reasonable, the
generator prioritizes the combination of the two tactics that have the
most times of simultaneous occurrences.

Discriminator: The discriminator adopts the MDL principle to
determine whether a pattern p should be included in the pattern set
P. Given a pattern set P and a candidate pattern cp, the discriminator

will regard cp as beneficial to summarizing dataset S if L(S,P+ cp)<
L(S,P), where L(S,P) is the description length using a given pattern
set P to describe the original dataset S. After cp is added to P, the
discriminator will regard pattern p, which is not a single value and is
used to generate cp, as redundant if L(S,P− p)< L(S,P). We compute
L(S,P) by considering three pieces of information that domain experts
mainly concern about in visual analytics. We explain these three pieces
of information as follows, taking Fig. 4 as an example.
• The number of tactics. There exist three tactics, X , Y , and Z.
• The number of usages. We describe the sequences by searching

the usage of each tactic. In Fig. 4, we highlight each usage of these
three tactics with the corresponding colors in the original sequences.
Pattern X is used 4 times, Y is used 3 times, and Z is used 2 times.

• The number of single values. After describing the sequences by
mined tactics, there may exist single values that cannot be described
by tactics. In Fig. 4, we color these single values in grey. Sequence
s1 has 2 single values, s2 has 6 ones, s3 has 4 ones, and s4 has 3 ones.
We need to balance these three pieces of information that users obtain

in our system. If there exist more tactics and more usages of tactics,
the number of single values will decrease, leading to lower information
loss. However, the tactic progression can be more complicated, leading
to higher visual clutter and analysis burden. In contrast, if there exist
fewer usages of tactics, the number of single values increases. Even
if we obtain the low visual clutter, the information loss is high so
that experts cannot obtain meaningful insights. To trade off between
information loss and visual clutter [54], we compute L(S,P) as follows:

L(S,P) = α|P|+β ∑
pi∈P

usage(pi)+ γ ∑
si∈S

single values(si), (1)

where |P| represents the number of tactics, usage(pi) represents how
many times pattern pi is used, single values(si) represents the number
of single values in sequence si, and parameters α , β , and γ control the
three terms. For convenience, we always set α to 1. When β increases,
the mined patterns will consist of more values, such that fewer patterns
are used to summarize S. When γ increases, the algorithm will mine as
many patterns as possible from a sequence so that fewer single values
exist. By defining such measures for computing the description length,
we can effectively find all tactics that meet the domain requirements.

4.2.2 Discovering Progression
This step is designed for highly abstracting the complex original se-
quences into a clear Sankey diagram that reveals the tactic progression,
based on the mined tactics (Fig. 4(A and B → D)). Given a pattern set
P and original sequences S, the algorithm generates a directed acyclic
graph G (i.e., the Sankey diagram). The abstraction mainly involves
two simplifications as follows.

Event sequences → Tactic sequences: We first simplify each orig-
inal sequence into a tactic sequence in the order in which the tactics
appear, so that we can omit the events that are not in tactics and re-
duce visual clutter. For example, as shown in Fig. 4(C), we obtain
four tactic sequences, ts1 to ts4, by simplifying the four original se-
quences, s1 to s4, respectively. Each tactic sequence is thereby a vector
ts = {t1, t2, ..., tl}, where l is the length, and ti indicates a tactic.

Tactic sequences → Tactic flow: Given a set of tactic sequences
T S = {ts1, ts2, ..., tsn}, we construct a directed acyclic graph to sum-
marize how tactics progress (Fig. 4(C→D)). Each node represents a
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tactic, and each link from node X to node Y represents the sequences
that contain two consecutive tactics from tactic X to tactic Y. The algo-
rithm consists of three steps — aligning, merging, and linking. First,
the algorithm aligns all tactics based on their indexes in the original
sequences, ensuring that aligned tactics occur almost simultaneously.
For example, assuming that tactic ta and tb are adopted in the a1-th hits
to the a2-th hits and the b1-th hits to the b2-th hits, respectively, we
require that a1 ≤ b2 and b1 ≤ a2. Second, for each group of aligned
tactics, we merge the same tactics as a node. For example, in Fig. 4(D),
we merge two Xs aligned at the first column, two Zs aligned at the first
column, and two Y s aligned at the second column. Third, the algorithm
will link each set of two nodes that occur consecutively in several tactic
sequences, as we show in Fig. 4(D).

5 SYSTEM DESIGN

In this section, we introduce our visual designs and interactions to
satisfy the aforementioned analysis tasks.

5.1 User Interface
The user interface consists of five main views (Fig. 1), namely, the
Control Bar (A), the Flow View (B), the Tactic View (C), the Projection
View (D), and the Rally View (E). Users usually start from the Control
Bar, selecting one player and his/her opponents as the analysis target.
The system filters all the rallies played by the selected players, and
then discovers the tactics and tactic progression, which usually takes
about one minute. Users can turn to the Flow View to explore the tactic
progression. They can click on a node of interest in the Flow View, and
the Tactic View then visualizes the tactic in detail. In addition, the Rally
View displays all the rallies containing the tactic of interest, providing
access to the raw sequences. We also design the Projection View to
allow users to find similar tactics, providing a Levenshtein distance-
based measure to compute the similarity. Users can click on two similar
tactics and compare them in the Flow View, which highlights where
they are used, and the Tactic View, which enables a comparison mode
for comparing two tactics. Further explanation is as follows.

5.1.1 Control Bar
The Control Bar allows users to select a dataset from one of several
racket sports, one player of interest (IP), and multiple opponents (OPs)
in order to analyze the tactics of the IP against these OPs (T1). The
system filters the rallies and displays the number of filtered rallies on
the right. Throughout the user interface, we distinguish the IP from the
OPs by hue because it is the most effective way to differentiate among a
small number of categories [43]. We chose orange for the IP because it
is an energetic and attention-getting color that domain experts preferred.
We chose blue to stand for the OPs because it contrasts with orange.

5.1.2 Flow View
The Flow View uses a Sankey diagram to show a ever-changing tactic
progression (T1, T2). The diagram is in chronological order from left
to right. Each node indicates a tactic along with certain contexts (i.e.,
specific pre-tactics). Multiple nodes may share the same tactic but have
different contexts. We introduce a glyph-based design (Fig. 1(B1))
to encode the tactic and its context (T3) because glyphs can visualize
multidimensional data with intuitive visual metaphors [3], preferred
by domain experts. Each flow from one node to another indicates that
IP first uses a tactic and then changes into another tactic without other
tactics in between, where the width encodes the number of sequences.

Glyph Design. The glyph for each node consists of four parts,
which follow a timeline-based design to maintain consistency with the
chronological order of the Sankey diagram. Each part encodes one
piece of key information about the tactic, helping users find tactics of
interest quickly. Details are as follows:

The “head” for contexts. The leftmost rectangle (i.e., the head) en-
codes the context in which the tactic was used. The height encodes the
number of rallies that used this tactic in that context. The hue encodes
whether IP or OPs have a higher winning rate before using the tactic
(i.e., the before-tactic winning rate). The saturation further encodes the
difference in this winning rate. The before-tactic winning rate reveals
whether a player is already at an advantage or a disadvantage before

Fig. 6. Three potential designs for the glyph. We finally choose C because
it follows the timeline-based design, thereby easy to understand.

choosing (or not choosing) the tactic at issue, allowing domain experts
to better understand the effect of the tactic itself. For example, assume
that there are three tactics, and both tactic A and tactic B can lead to
tactic C. To compute the before-tactic winning rate of tactic C, we
calculate the average winning rate after using tactic A and tactic B.

The “body” for the multivariate tactic. Inspired by MatrixWave
[67], we propose a matrix-based design (i.e., the body) for encoding a
multivariate tactic and revealing which attributes are most important to
that tactic. Each column represents an event, and each row represents
an attribute. Each cell thereby indicates a value, where the solid cells
highlight the values of attributes in the tactic, and the hue encodes
whether IP or OPs hit the ball.

The “tail” for transition. The shrinking flow (i.e., the tail) illus-
trates how rallies progress after the tactic is used. Some rallies end
immediately, while others go on to include more tactics, which we call
posterior tactics. For each tail, the height of the right side, which also
indicates the number of rallies that have posterior tactics. The differ-
ence in height on the two sides of the flow thereby encodes the number
of rallies that end after using the tactic. A node with a significant height
difference indicates a tactic that often leads directly to scoring or losing
a point. The tail has similar color encodings to the head, encoding the
winning rate after the tactic is used. By comparing the color of the head
with the color of the tail, users can determine the tactic’s effect and
whether it is a good tactical choice.

The expandable “belly” for spatial values. Spatial values (e.g.,
ball position) play a role in all racket sports and are informative for
domain experts. Inspired by the work of Liu et al. [39] and Perin
et al. [45], which allow users to switch among different glyphs that
visualize multiple levels of detail, we propose an expandable glyph
design, toggled by double-clicking on the glyph, to encode the detailed
values of a spatial attribute. Inspired by studies on spatial-temporal
visualizations [14, 18, 30, 49, 57, 62], we superimpose a heatmap on
a court-shaped diagram, below each column of the matrix, indicating
where the ball bounced on the court before the corresponding hit. For
each area in the heatmap, the hue encodes the player who receives the
ball, and the opacity encodes the frequency.

We have considered other design alternatives for the glyph. We first
consider the trapezoid-based design (Fig. 6(A)), where the upper part
and the lower part encode the before-tactic and after-tactic winning
rates, respectively, by the area of the left block (IP wins) and the right
block (OPs win). The abstract design makes it difficult for users to
remember the meaning of each block. We also consider the circle-based
design (Fig. 6(B)), where the outer circle encodes the contexts, the
inner circle encodes the results, and the bar chart on the top reveals
the most related attribute. Although the design is a visual metaphor
for a ball, the encodings are not intuitive enough to be recognized and
memorized. Finally, we adopt the timeline-based design (Fig. 6(C)),
which maintains consistency with the chronological order of the Sankey
diagram, and is therefore easy to understand.

Layout algorithm. Multiple flows, especially cross-layer ones, may
exist in racket sports because of the ever-changing tactics. Flow cross-
ing and the flow-node overlap can be heavy, making it difficult for users
to obtain insights. We address this problem in three ways. 1) We insert
dummy nodes [65] for each cross-layer flow to avoid flow-node overlap.
However, when many dummy nodes exist, the layout may be so sparse
that users cannot view the whole flow chart. Thus, we allow users to
choose whether to use the dummy nodes (Fig. 9) or not (Fig. 8). When
dummy nodes are not used, we add a gap between the overlapping
node-edge pair to prevent users from thinking they are connected. 2)
We adopt a heuristic layout algorithm [21] to reduce flow crossing. An
alternative is an ILP-based crossing reduction algorithm [65], which
can lead to the fewest number of crossings. However, the ILP-based
algorithm may take too long to run when many dummy nodes exist.
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Thus, we choose the heuristic one to balance between run time and the
effect of the layout. 3) We further allow users to hover over a node to
highlight all the flows linked to it.

5.1.3 Projection View
The Projection View (Fig. 1(D)) reveals similarities among tactics (T1,
T3). Each tactic is represented by a point, and the distance between
two points encodes the similarity between the two tactics. For each
point, the area encodes the frequency of the tactic. The hue and the
saturation encode the winning rate after using the tactic, consistent
with the tail of our glyph design in the Flow View. To reveal the
similarity, we adopt t-SNE to project each tactic into the 2-D plane.
We chose t-SNE for two reasons. First, t-SNE strives to preserve local
neighborhoods, which satisfies the preferences of of experts, who only
care about similar tactics and not how different less similar ones are.
Second, it can accept a distance matrix as input so that we can manually
compute the similarity and encode it as distance. We compute the
difference between two tactics based on Levenshtein distance, an edit-
based similarity measure, because the tactics are short and of unequal
length [13]. We consider five tailored edits – each with a cost of 1 –
for transferring multivariate tactics: adding/deleting/replacing a value
and inserting/deleting an event without any values. However, spatial
attributes (e.g. ball position) differ from others (e.g. hitting technique)
because we can intuitively perceive the distance between two spatial
values. Thus, we calculate the Euclidean distance to represent the edit
cost between two spatial values. We set the largest Euclidean distance
for each attribute as 2. For example, when indicating where the ball
bounces on a half-court, we define the diagonal length of the half-court
as 2. This setting ensures that the average edit cost for changing one
spatial value to another is about 1, so that spatial attributes are not
overweighted compared to other attributes.

5.1.4 Tactic View
When users click on the glyph or point of a tactic, the Tactic View
can visualize the multivariate tactic in tabular form (T1), where each
row represents one attribute, and each column represents one event.
Each obround indicates the value of an attribute within an event, while
the hue of the background encodes who hits the ball. For each value
within the tactic, we directly display this value as text because there
are so many possibilities that it does not make sense to design different
encodings or to expect users to remember them. For values where the
player has multiple choices for applying the tactic, we visualize the
frequency of each choice through a bar chart, one bar for one choice.
The bar chart helps users understand how the tactic is used in detail by
including values ignored by the pattern mining algorithm. Due to space
limitations, we surface the three most frequently seen values because
these are most important to domain experts. Users can also hover on
the obround to view the frequency of all values.

When users then right click on another tactic, this view can enable
a comparison mode (Fig. 1(C1)) to compare the two tactics (T4). To
reduce users’ learning costs, we simply divide each obround into two
parts and juxtapose the corresponding values of the two tactics for a
one-to-one comparison [23]. To ensure that similar hits are aligned, we
also propose a greedy alignment strategy based on the relative indices
and which player made each hit. For example, tactic A consists of hits
1, 2, and 3, and tactic B consists of hits 7, 8, and 9. If hit 1 and hit 7 are
made by the same player, we will align them directly. Otherwise, we
will either align hit 1 and hit 8 or hit 2 and hit 7, depending on which

5.1.5 Rally View
The Rally View (Fig. 1(E)) lists all the rallies that contain a tactic
selected by users (T5), one per row. The view is divided into two parts
according to the outcome of each rally so that users can compare rallies
that IP won (the upper parts, indicated by a W on the left) and that
he/she lost (the lower part, indicated by an L on the left). The top-right
corner of each part displays the total number of wins and losses. For
each row, circles on the right represent the hits in the rally, where the
hue encodes whether IP or OPs hit the ball, and the number is the index
of the hit. We highlight hits within the tactic with a solid circle so that
users can know where the tactic is applied. When the user clicks on a

Fig. 7. Example of tracking rallies. Given a Sankey diagram containing
seven flows ( f1 to f7), we click on two flows ( f4 and f2) in two steps. The
clicked flows will be marked with a white stroke, and the related flows will
be highlighted with a darker color.

rally, the exact values are expanded into a table. Users can also hover
over a row to find a video button on the right, which triggers a video of
the appropriate segment of the rally.

5.1.6 Interactions
Navigating the flow chart. Because there may exist numerous tactics,
users can zoom in, zoom out and pan the Flow View by scrolling the
wheel and dragging the canvas, respectively. To prevent users from
accidentally moving the flow chart offscreen and losing track of it, users
can reset the canvas to its original position by double-clicking.

Tracking the progression of some rallies. Users can click on any
of the several flows in the Flow View to track rallies that contain these
flows. After a flow is clicked on, the Flow View filters the rallies and
highlights the flows that these rallies flow through with a darker color.
The width of the darker flows encodes the number of filtered rallies.
For example Fig. 7 shows a Sankey diagram containing seven flows
( f1 to f7). In step 1, we click on flow f4, which is then marked with
a stroke. The previous flows ( f1 and f2) and the posterior flows ( f6
and f7) are also highlighted with a darker color. In step 2, we further
click on flow f2 in the rallies. As a result, flow f6 is still highlighted,
but flow f7 is no longer highlighted, indicating that all rallies that flow
from f2 and f4 will flow to f6 but not f7.

Link-highlighting the same tactics in different views. We link
all the visual elements that encode the same tactics together to allow
users to explore a tactic of interest in different views. For each tactic,
the linked visual elements include a point that represents the tactic in
the Projection View and several nodes where the tactic is applied in
the Flow View. When users click on one of these, the user interface
highlights all linked visual elements with shadow. Simultaneously, the
Tactic View displays the tactic, and the Rally View displays all the
rallies in which the tactic is used.

Comparing similar tactics. We support the comparison of tactics in
the Projection View, which reveals similarities directly. To compare two
tactics – both represented by points – users click on one point and then
right-click on a second. The Tactic View will enable the comparison
mode, and the Flow View will highlight the nodes where the two tactics
are used with two levels of shadow, in order to differentiate them.

Displaying details on demand. Since users may forget the meaning
of encoding or need to know specific values, they can hover over any
visual element to reveal a tooltip that shows the accurate values. For
example, users can hover on a node in Flow View to view the before-
tactic and after-tactic winning rate, the frequency, and the number of
rallies with posterior progression. Users can also hover on a point in
Projection View to view the frequency and the winning rate.

6 EVALUATION

This section first measures the efficiency and effectiveness of our algo-
rithm via an algorithm evaluation. Two case studies with four domain
experts, as well as interviews with these experts, further demonstrate
the usability of our system.

6.1 Algorithm Evaluation
We quantitatively evaluated our multivariate pattern mining algorithm
on 5 multi-scaled synthetic datasets and 2 real-world datasets. The
average performance of our algorithm on each datasets is reported
in Table 1. The 5 synthetic datasets vary in terms of the number
of sequences, the average length of each sequence, the number of
attributes, and the number of optional values of each attribute. The 2
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Table 1. The results of the quantitative experiments. We generated 5
synthetic datasets (D1 to D5) and collected two real-world datasets (DT
and DB), varying in terms of the number of sequences (S), the length
of each sequence (|si|), the number of attributes (|A|), and the number
of optional values of each attribute (|Vk|). After running the algorithm,
we recorded the runtime (t), the number of mined tactics (|T |), and the
number of planted tactics detected (|PTd |, only for synthetic datasets).

Datasets Results

id |S| |si| |A| |Vk| t(s) |T | |PTd |
D1 500 10 3 10 28.9 35 5
D2 700 10 3 10 56.1 26 5
D3 500 20 3 10 53.1 26 5
D4 500 10 5 10 84.3 58 5
D5 500 10 3 20 25.9 30 5

DT 531 8.43 3 26 / 12 / 14 35.6 35 /
DB 338 12.82 3 4 / 6 / 15 56.2 25 /

real-world datasets were provided by domain experts and cannot be
made public due to a confidentiality agreement. These were also used
in our case studies (Sec. 6.2). Because no other tactic-mining algorithm
of this type exists to serve as a baseline, we tested only our algorithm,
using a computer with a 2 GHz CPU and 16 GB of memory.

Synthetic Dataset Generation. Each synthetic dataset was gen-
erated in three steps: 1) We randomly generated S multivariate event
sequences over |A| attributes, each with |Vk| optional values. The length
of each sequence was |si|. 2) We randomly generated five multivariate
tactics. The length of each tactic was between 2 and 4. 3) We randomly
planted the patterns into sequences without overlapping, ensuring that
each pattern covered 10% of events in the datasets. All the parameters
here are similar to those that would appear in a real-world dataset.

Results. We discuss the performance of our algorithm in two as-
pects. 1) Runtime t is about one minute. This runtime is acceptable
for users because we only run the algorithm once and save all the data
for interactive exploration in memory. 2) Effectiveness. All planted
tactics in the synthetic datasets could be detected (|PTd |= 5), where
we regard a planted tactic as detected if a mined tactic contains the
planted tactic. The number of all mined tactics (|T |) for each dataset is
about 30, which is small enough for domain experts to analyze.

6.2 Case Studies
We obtained two datasets from domain experts for case studies — a
tennis dataset DT and a badminton dataset DB. Both datasets are based
on several matches during high-level events in 2019, all played between
top players in the quarterfinals or later. We only considered rallies that
contained five or more hits because athletes generally do not change
tactics during short rallies. Dataset DT was collected from six matches,
where Djokovic served the ball and competed against six other top-10
players. The dataset recorded three attributes for each event, including
the hitting position (26 values), the player’s pose (12 values), and
the hitting technique (14 values). Dataset DB was collected from five
matches, where Momota Kento played against four other top-10 players.
The dataset recorded three attributes, including the shuttle’s height (4
values), the hitting position (6 values), and the hitting technique (15
values). All the attributes and values are listed in the Appendix.

For each dataset, we invited two domain experts engaged in data
analysis of racket sports to conduct a case study together. One expert is
a professor, and the other is a Ph.D. candidate. They are both former
professional players and have provided data analysis for a national
team for more than five years. We deployed the system online and
conducted case studies through online meetings, each lasting for about
20 minutes. We first introduced the system to the experts and explained
the encodings and interactions. After they were familiar with the
system, we allowed them to explore the data by themselves, where we
recorded the workflow and their explanations for the findings.

6.2.1 Tennis
In this case, experts explored the ever-changing tactics of Djokovic
and further discovered how to compete against him (Fig. 8). They

first filtered out all tactics with a frequency of less than 9, in order
to simplify the visualizations. They were quickly attracted to the
Flow View (without dummy nodes), where most nodes ended with an
orange tail, indicating that Djokovic could score more points than his
opponents while using most tactics. The experts explained that even
when his opponents were all top athletes, Djokovic still had a significant
advantage against them. They became particularly curious about how
to win against Djokovic. Exploring the data with this in mind, they
obtained several insights, the most impressive of which are as follows.

Predicting Djokovic’s serving helps to win against him. Because
knowing Djokovic’s strengths can reduce the probability of losing to
him, experts browsed the Sankey diagram to search for tactics that
allowed him to score the most points, looking especially for serving
tactics. They quickly found two at the start of the Sankey diagram (Fig.
8 (A1 and A2)), where the tails were orange and shrank significantly.
Experts concluded that Djokovic uses high-quality serves to score points
directly. One expert commented, “the glyphs help me find tactics of
interest quickly instead of examining the tactics one by one, saving my
time.” By double-clicking on the nodes to expand them, experts further
found that Djokovic served in predictable ways: When he served at
the right of the centerline, he always hit the ball to the right corner
(Fig. 8 (A1a)). And when he served at the left of the centerline, he
usually hit the ball to the outside corner of the left zone (Fig. 8 (A2a)).
Experts suggested that while competing against Djokovic, an athlete
could predict which area he would hit the ball to by where he stood.
One expert commented, “prediction is essential for athletes to return a
high-quality ball and keep the competitive edge in the following hits.”

Grabbing the first offense at the second hit helps to win against
Djokovic. Experts continued to search for tactics that have effectively
countered Djokovic’s serving. They focused on a tactic (Fig. 8 (A3a))
at the start of the Sankey diagram, which ended with a blue tail, and
clicked on it. They first noticed that the system highlighted three nodes
where the tactic was adopted, but that the other two nodes (Fig. 8 (A3b
and A3c)) had orange tails, meaning that the tactic scored many points
for Djokovic in the other two situations. There existed a wide flow from
A3a to A3b, which indicated that the tactic could lose many points for
Djokovic when used once but score many points when using it twice.
Experts further turned to the Tactic View to explore the tactic in detail
(Fig. 8(B3)). The tactic was most related to the hitting technique and
the hitting pose. Two players used an offensive technique called drive,
and tended to use forehand to hit the ball. Finally, experts viewed
the Rally View (Fig. 8(C3)) and found that this tactic usually led to
Djokovic losing points when used at the start of the rallies. The stacked
bar chart made after the meeting (Fig. 8(D3)) also proved these findings,
where the x-axis was the index of the hit where the tactic is used, and
the y-axis was the number of rallies that Djokovic won (in green) or
lost (in red). Experts concluded that one effective strategy for winning
against Djokovic involves grabbing the first offense at the second hit. In
addition, ending the rally as soon as possible is better than allowing a
long-term counterattack, which tends to be beneficial to Djokovic. Both
experts felt interested in this conclusion, with one commenting that
“only when we know the tactic progression can we comprehensively
know the tactic in depth.”

6.2.2 Badminton

In this case study, experts explored how Momota scored points. Unlike
tennis, where rallies are usually short, rallies in badminton are much
longer, meaning serving tactics have a smaller impact on the outcome.
Thus, badminton experts preferred to analyze how athletes adopted
tactics near the end of a rally instead of focusing on serving tactics.

Experts first found that the number of tactics was so large that the
flow chart was complicated. They found it helpful to filter out tactics
that occurred less than 9 times. One expert commented, “I can choose to
analyze one player’s main strategies in a short time or analyze him/her
comprehensively in a long time.” At first glance, they found that there
were only 11 points in the Projection View (Fig. 9(A)), but numerous
nodes in the Flow View (Fig. 9(B)). They thought this was correct
and explained that defense is usually easier than offense in badminton
because the badminton racket is long while the court is small. Thus,
most badminton players prefer to counterattack — patiently defending
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Fig. 8. Screenshots of our system visualizing tennis analysis (Sec. 6.2.1). Experts explored three tactics, and we highlight them in purple, green, and
pink, respectively. A1 and B1 are related to the first tactic, visualizing where the tactic is used and the details of the tactic, respectively. So do A2 and
B2, which are related to the second tactic. The third tactic (B3) is used in three situations (A3a, A3b, and A3c). C3 shows the rallies that adopt this
tactic. D3 visualizes the relationship between the number of wins (green line) or losses (red line) and the index of the hit where the tactic is used.

with multiple hits, and fiercely attacking after they find their opponent’s
flaws. The key to switching from defense to offense was forcing the
opponent to run to one side of the court so that he/she could not return
a shuttle hit to the other side. Although the limited area of the court
limits the number of possible tactics, players can repetitively hit the
shuttle to different sides, resulting in a complicated progression. This
finding inspired them to start the exploration from the Projection View.
Their two most impressive insights are as follows.

Superb net tactics brought opportunities for Momota to attack
in the backcourt Experts quickly found the largest orange point in
the Projection View (Fig. 9(A1)), which indicated that Momota used
this tactic frequently and won lots of points. By clicking on it, experts
explored the tactic in detail. They first turned to the Tactic View (Fig.
9(C, the left part)). They found that both players hit the shuttle at the low
height, which was risky (the shuttle may be caught in the net), but could
bring high rewards (it is difficult for the opponent to return). In all cases,
Momota’s opponents used the technique lift, which sends the shuttle
high and to the backcourt. Experts speculated that Momota’s superb
net tactics forced the opponent to lift the shuttle, creating opportunities
for him to attack powerfully in the backcourt. One expert commented,
“I like the simple texts and bar charts. They are easier to understand
than complicated design.” Experts next turned to the Flow View (Fig.
9(C), with dummy nodes) to further explore the use of this tactic. They
found that Momota usually brought out this tactic at the start of a rally
(Fig. 9(B1a)). They also found that the node B1b received flows from
many previous nodes, indicating that Momota used this tactic in many
different cases. Experts clicked on the flow to explore the progression.
They noticed that flows existed connecting nodes B1a, B1b, and B1c,
which meant that Momota might use this tactic as a serving tactic and
then use it repeatedly to win against opponents. Both experts praised
this interaction, with one saying that “the system guides me to focus on
the tactic progression of my interest.”

Momota should not serve the shuttle to the left of the mid-court
when using this tactic. Experts further discovered a small blue point
(Fig. 9(A2)) near the largest orange point, which indicated that these
two tactics were similar but led to different performances. In this
description, we refer to the orange tactic as Tactic 1 and the blue one
as Tactic 2. By right-clicking on the blue point, experts compared
Tactic 2 with Tactic 1. One expert believed it useful to compare two

similar tactics with different winning rates, “athletes could quickly find
a tactical weakness they had not seen before, and know how to correct
them.” They first turned to the Flow View (Fig. 9(B)) and compared
the contexts of these two tactics. In contrast to Tactic 1, which was
used at many different times, Tactic 2 was usually used at the start of
a rally (Fig. 9(B2a, B2b)), especially as a serving tactic. They further
compared these two tactics in the Tactic View (Fig. 9(C)). They found
that within these two tactics, only one value differed — the position
where Momota hit the shuttle to on the second hit. Momota usually
hit the shuttle to the right of the court in Tactic 1 but the left of the
mid-court in Tactic 2. By viewing the posterior progression of Tactic
2, experts found that Momota was unable to attack consecutively. The
experts speculated that presently, Momota might adopt Tactic 2 as an
alternative to Tactic 1. However, serving the shuttle to the left of the
mid-court might be a weak tactic because Momota’s opponents were
all right-handed, who can return the shuttle in a suitable pose. One
expert commented excitedly, “this finding may help our athletes win
more points against Momota.”

6.3 Expert Interview
After the case studies, we conducted an in-depth interview with each ex-
pert about the platform’s usability and their suggestions. They praised
our system highly for its professionalism and its ability to bring new
insights. The Flow View impressed the experts mostly due to its inno-
vative design and ability to provide experts with the overall impression
of the ever-changing tactics. Another expert suggested that we could
recommend the “optimal” flow path after a node, showing the best
choices for both players because he believed that the Sankey diagram
could be used as a decision tree. All experts also found the system
interactions intuitive. One expert thought highly of the tooltips and
the link-highlight, saying “the system is user-friendly. Want to know
what it means? Hover on it. Want to know more? Click on it.” All
experts agreed that our system provided a novel perspective for domain
analysis in terms of tactic progression. They also believed that our
system could significantly improve athletes’ tactical performance if
employed by the national team. One expert summarized, “we only knew
the single tactics of a player before but never knew when would the
player use a tactic and which tactics he/she planned for subsequent
hits. The system brings new insights about tactics to us so that we can
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Fig. 9. Screenshots of our system visualizing badminton analysis (Sec. 6.2.2). (A) is the Projection View, where experts analyzed two tactics –
Tactic1 (A1) and Tactic2 (A2). (B) is the Flow View, where B1a to B1d represent the usages of Tactic1, and B2a and B2b represent the usages of
Tactic2. (C) is the Tactic View, comparing the two tactics, where Tactic1 is on the left, and Tactic2 is on the right.

think more to play against some tactics.”

7 DISCUSSION

In this work, we propose a novel visual analytics system for analyzing
ever-changing tactic progression in racket sports to help domain experts
discover how athletes change their tactics. In the field of visual analyt-
ics, this work introduces a novel multivariate pattern mining algorithm
and tailored glyph-based visualizations to discover pattern progressions.
In the field of domain analysis, we introduce a new analysis method to
help experts and athletes understand tactic progression. Through case
studies, domain experts discovered how top-tier athletes changed their
tactics and learned how to compete against them effectively.

Generalizability. Although we have focused on racket sports in
this paper, we argue that our work can inspire research in other sports
that require progression analysis of multivariate sequential patterns.
Taking soccer as an example, each individual pass or shot could be
considered as an event, and a series of passes until the final shot could be
considered as a sequence. For each pass, experts may be concerned with
the players’ positions, each team’s formation, and so on. Progression
analysis is essential because a team can adopt ever-changing passing
tactics, which involve several passes, depending on whether the ball is
in the back, middle, or front of the field. One of our experts, who also
has knowledge about soccer, commented that our work could be used
to analyze the progression of passing tactics. He said, “such analysis
can help us understand how a team creates the opportunity for a shot
by using passing tactics progressively.”

Scalability. We discuss the scalability of three main views in our
system. 1) When we compare two long tactics in the Tactic View, the
width of the Tactic View may diverge. We first use an adaptive layout,
so that tactics can be displayed as completely as possible. We also allow
users to scroll the Tactic View horizontally when the tactics are too long
to be shown on one screen. 2) When many nodes and flows exist in the
Flow View, the flow chart can become too complicated to understand
(e.g. in our badminton case). Experts praised our interactions for
navigating the Sankey diagram and filtering the nodes, which “greatly
simplified the flow chart with the most important information preserved.”
3) When many points exist in the Projection View, these points may
be overlapped. Our system can globally scale the radius of all points
automatically according to the number of points, in order to lighten the
overlap between them.

Design lessons learned. Our glyph design process taught us an im-
portant lesson — when a local design is complex, keeping it consistent

with global design can help users recognize and remember encodings.
We introduce three potential glyph designs for encoding a wealth of es-
sential information about multivariate tactics and the contexts of usages.
The experts preferred the design where chronology is consistent with
the overall Sankey diagram, saying they are able to infer the meaning
of each part and thus understand the complex design.

Limitations and future work. Our current design cannot support
numerical data well. Racket sports involve some important numerical
attributes, such as ball speed. Currently, we first quantize attributes
like these into multiple ranges, where each is a discrete category, and
then apply our system. Although this method is workable for analyzing
numerical data in practice, it interrupts numerical accuracy (two similar
values may be divided into two ranges). In the future, we plan to
propose an effective measure for computing description length that
considers both numerical data and categorical data. We also plan to
extend the current design by integrating charts, which more intuitively
visualize numerical data.

8 CONCLUSION

In this study, we present a visual analytics system to analyze the tactic
progression in racket sports. The system models the racket sports data
as multivariate event sequences and discovers the tactics by mining
multiple non-overlapping multivariate patterns. Considering that these
tactics are versatile and ever-changing, we propose an effective pattern
mining algorithm. Based on the mined tactics, we propose a user
interface to visually analyze progressions from one tactic to the next.
The core view is a glyph-based Sankey diagram, where each glyph
encodes a wealth of important information about a tactic and can further
help users focus on the tactics that may have the most significant effect
on a progression. The user interface also supports interactions that
help users explore tactics in multiple levels of detail. Through two
case studies on badminton and tennis and interviews with four domain
experts, we demonstrate the usability and effectiveness of our system.
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